官网
问答
专家
文章
公告
财富商城
首页
问题库
资讯专栏
标签库
问答话题
问答专家
NEW
发布
提问题
发文章
求f(x)=(x^2-1)^3的单调性和极值
2023-07-26 12:55
发布
×
打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮
站内问答
/
默认分类
855
1
4
解:f(-x)=[(-x)²-1]³=(x²-1)³=f(x),是偶函数。对称轴x=0,即函数关于y轴对称。 取a>b≥
发送
1条回答
1楼 · 2023-07-26 13:27.
采纳回答
解:f(-x)=[(-x)²-1]³=(x²-1)³=f(x),是偶函数。对称轴x=0,即函数关于y轴对称。
取a>b≥1,f(a)-f(b)=(a²-1)³-(b²-1)³=[(a²-1)-(b²-1)][(a²-1)²+(a²-1)(b²-1)+(b²-1)²]=(a²-b²)[(a²)²-2a²+1+a²b²-a²-b²+1+(b²)²-2b²+1];
∵a>b≥1,∴a²-b²=(a+b)(a-b)>0;而a²-1>0,b²-1>0,即:(a²-1)²+(a²-1)(b²-1)+(b²-1)²>0,也就是说在x∈[1,+∞)时,函数单调递增;根据对称性可知,x∈(-∞,-1]时,函数单调递减。
另外,在x∈(0,1)时,取值a>b,同样可算出:f(a)-f(b)=(a²-1)³-(b²-1)³=[(a²-1)-(b²-1)][(a²-1)²+(a²-1)(b²-1)+(b²-1)²]>0,【a²-1<0,b²-1<0,∴(a²-1)(b²-1)>0】,即在区间x∈(0,1)时,函数也是单调递增的,x=1时,函数f(x=1)=(1²-1)³=0,函数在实数轴有意义。
即函数f(x)的图象是一个和y=x²类似的图象,存在极小值f(x=0)=(0²-1)³=-1;
函数在x∈(-∞,0)单调递减,在x∈(0,+∞)单调递增。
极值正无限和负一。负无限到零上减。零到正无限上增。
加载中...
一周热门
更多
>
相关问题
相关文章
撸彩金,流水够了就提现,靠谱吗?
0个评论
冠亚和大双2.38的有人能跟我换一个小单1.85或以上的吗
0个评论
已成功上岸,一个大专学历程序员的大厂之路
0个评论
期权的无风险套利策略
0个评论
买卖银行卡,帮朋友转账刷流水,制作赌博诈骗app,会被判多久?
0个评论
科普贴,关于套息交易
0个评论
Coin919量化平台完成BigONE市场对接
0个评论
介绍一个副业,平时刷刷手机点一点,也可以月入10000+——益购云商,一个利润前置的赚钱平台
0个评论
×
关闭
采纳回答
向帮助了您的网友说句感谢的话吧!
非常感谢!
确 认
×
关闭
编辑标签
最多设置5个标签!
保存
关闭
×
关闭
举报内容
检举类型
检举内容
检举用户
检举原因
广告推广
恶意灌水
回答内容与提问无关
抄袭答案
其他
检举说明(必填)
提交
关闭
×
关闭
您已邀请
15
人回答
查看邀请
擅长该话题的人
回答过该话题的人
我关注的人
取a>b≥1,f(a)-f(b)=(a²-1)³-(b²-1)³=[(a²-1)-(b²-1)][(a²-1)²+(a²-1)(b²-1)+(b²-1)²]=(a²-b²)[(a²)²-2a²+1+a²b²-a²-b²+1+(b²)²-2b²+1];
∵a>b≥1,∴a²-b²=(a+b)(a-b)>0;而a²-1>0,b²-1>0,即:(a²-1)²+(a²-1)(b²-1)+(b²-1)²>0,也就是说在x∈[1,+∞)时,函数单调递增;根据对称性可知,x∈(-∞,-1]时,函数单调递减。
另外,在x∈(0,1)时,取值a>b,同样可算出:f(a)-f(b)=(a²-1)³-(b²-1)³=[(a²-1)-(b²-1)][(a²-1)²+(a²-1)(b²-1)+(b²-1)²]>0,【a²-1<0,b²-1<0,∴(a²-1)(b²-1)>0】,即在区间x∈(0,1)时,函数也是单调递增的,x=1时,函数f(x=1)=(1²-1)³=0,函数在实数轴有意义。
即函数f(x)的图象是一个和y=x²类似的图象,存在极小值f(x=0)=(0²-1)³=-1;
函数在x∈(-∞,0)单调递减,在x∈(0,+∞)单调递增。
极值正无限和负一。负无限到零上减。零到正无限上增。
一周热门 更多>